
### Gudrun Wolfschmidt (Hg.)

# Entwicklung der Theoretischen Astrophysik







#### Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Band 4

Gudrun Wolfschmidt (Hg.)

# Entwicklung der Theoretischen Astrophysik

Proceedings des Kolloquiums des Arbeitskreises Astronomiegeschichte in der Astronomischen Gesellschaft am 26. September 2005 in Köln.







Hamburg: tredition 2011

## Nuncius Hamburgensis

#### Beiträge zur Geschichte der Naturwissenschaften

Hg. von Gudrun Wolfschmidt, Universität Hamburg, Geschichte der Naturwissenschaften, Mathematik und Technik (ISSN 1610-6164).

Diese Reihe "Nuncius Hamburgensis" wird gefördert von der Hans Schimank-Gedächtnisstiftung. Dieser Titel wurde inspiriert von "Sidereus Nuncius" und von "Wandsbeker Bote".

Wolfschmidt, Gudrun (Hg.): Entwicklung der Theoretischen Astrophysik. Proceedings des Kolloquiums des Arbeitskreises Astronomiegeschichte in der Astronomischen Gesellschaft am 26. September 2005 in Köln. Hamburg: tredition (Nuncius Hamburgensis – Beiträge zur Geschichte der Naturwissenschaften; Band 4) 2011.

Abbildung auf dem Cover vorne und Frontispiz: Albert Einstein (1879–1955); Foto: Gudrun Wolfschmidt in Szeged (2010)

Titelblatt: Karl Schwarzschild (1873–1916),

Arthur Stanley Eddington (1882–1944) und Albrecht Unsöld (1905–1995)

Abbildung auf dem Cover hinten: Gravitationswellendetektor LISA (2014),

(C)ESA, http://waterocket.explorer.free.fr/research.htm.

Geschichte der Naturwissenschaften, Mathematik und Technik, Universität Hamburg Bundesstraße 55 – Geomatikum, D-20146 Hamburg

http://www.math.uni-hamburg.de/spag/ign/w.htm

Dieser Band wurde gefördert von der Schimank-Stiftung.

Das Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwertung ist ohne Zustimmung des Verlages und des Autors unzulässig. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Verlag: tredition GmbH, Mittelweg 177, 20148 Hamburg ISBN 978-3-8424-6744-6 – © 2011 Gudrun Wolfschmidt. Printed in Germany.

| Vorwor  | t: Entwicklung der Theoretischen Astrophysik                                                                |           |
|---------|-------------------------------------------------------------------------------------------------------------|-----------|
| Gua     | lrun Wolfschmidt (Hamburg)                                                                                  | 13        |
| Zur Ge  | schichte der Astronomie und Physik in Köln                                                                  |           |
|         | us Kiefer (Köln)                                                                                            | 16        |
| 0.1     | Einleitung                                                                                                  | 16        |
| 0.2     | Das Studium generale (1248–1388)                                                                            | 16        |
| 0.3     | Die alte Universität (1388–1798)                                                                            | 21        |
| 0.4     | Die Zeit zwischen alter und neuer Universität (1798–1919)                                                   | $2^{\xi}$ |
| 0.5     | Ausblick                                                                                                    | 30        |
| 1 Das V | Verständnis des Michelson-Morley-Versuchs – Wegbereiter für Einn?                                           |           |
| Hen     | ning Krause (Hamburg)                                                                                       | 33        |
| 1.1     | Literatur, Forschungsstand und Fragestellung                                                                | 33        |
| 1.2     | Das Konzept von Lichtwellen und Äther                                                                       | 34        |
| 1.3     | Das Experiment: Die Idee hinter dem Michelson-Morley-Versuch                                                | 35        |
| 1.4     | Das klassische Michelson-Morley-Experiment                                                                  | 37        |
| 1.5     | Interpretationen: Mitführungshypothese und andere Erklärungs-                                               |           |
|         | versuche                                                                                                    | 40        |
| 1.6     | Der Michelson-Morley-Versuch als experimentum crucis?                                                       | 42        |
| 1.7     | Die Rolle des Experiments in Physik-Lehrbüchern                                                             | 44        |
| 1.8     | Michelson als Wegbereiter für Einstein?                                                                     | 47        |
| 1.9     | Literaturverzeichnis                                                                                        | 50        |
| 2 Alber | t Einsteins Leseempfehlung                                                                                  |           |
|         | nin Gerl (Regensburg)                                                                                       | 53        |
|         | entdeckte die Gravitationsgleichungen der Allgemeinen Relativitätsbrie: Albert Einstein oder David Hilbert? |           |
|         | niela Wuensch (Göttingen)                                                                                   | 6         |
|         | Wie entdeckte Hilbert seine Gravitationsgleichungen?                                                        | 69        |
| 3.2     | Wie entstand der Ausschnitt in Hilberts Fahnenkorrekturen? .                                                | 72        |

| 3.3      | Wisser  | nschaftshistorische Bedeutung der Untersuchung                                                         | 79  |
|----------|---------|--------------------------------------------------------------------------------------------------------|-----|
| 3.4      | Bibliog | graphie                                                                                                | 82  |
| 4 Droi l | zosmolo | gische Dogmen – Einsteins Einfluß auf die frühe relativisti                                            | _   |
|          | Kosmo   |                                                                                                        |     |
|          |         | g (Augsburg)                                                                                           | 87  |
| 4.1      |         | nrung                                                                                                  | 87  |
| 4.2      |         | instein-Universum                                                                                      | 88  |
| 4.3      | Erstes  | kosmologisches Dogma: Die Statik des Weltmodells                                                       | 92  |
|          | 4.3.1   | "Die [ ] Resultate bezüglich einer nichtstationären Welt                                               |     |
|          |         | schienen mir verdächtig": Einsteins Kritik an der Arbeit                                               |     |
|          |         | Friedmanns                                                                                             | 92  |
|          | 4.3.2   | "[T]out à fait abominable": Einsteins Ablehnung von Le-                                                |     |
|          |         | maîtres Weltmodell                                                                                     | 96  |
|          | 4.3.3   | Einsteins Annahme der Statik des Universums                                                            | 98  |
| 4.4      |         | es kosmologisches Dogma: Die räumliche Endlichkeit des                                                 |     |
|          |         | nodells                                                                                                | 100 |
|          | 4.4.1   | "[D]ie Welt [muß] als räumlich geschlossen betrachtet [wer-                                            |     |
|          |         | den]": Einsteins Betonung der Bedeutung der räumlichen                                                 | 100 |
|          | 4.4.2   | Endlichkeit des Universums bis 1921                                                                    | 100 |
|          | 4.4.2   | dell Seletys                                                                                           | 108 |
|          | 4.4.3   | "[T]he view that the continuum is [] finite in its space-                                              | 100 |
|          | 1.1.0   | like extent has gained probability": Einsteins weiteres                                                |     |
|          |         | Eintreten für die Annahme der räumlichen Endlichkeit                                                   |     |
|          |         | in den 20er Jahren                                                                                     | 110 |
|          | 4.4.4   | Der Einfluß von Einsteins zweitem kosmologischen Dog-                                                  |     |
|          |         | ma auf die Forschung in den 20er Jahren                                                                | 111 |
|          | 4.4.5   | Einsteins Festhalten an der räumlichen Endlichkeit des                                                 |     |
|          |         | Universums in den 30er Jahren                                                                          | 116 |
|          | 4.4.6   | "[D]ie Entscheidung zwischen beiden denkbaren Fällen                                                   |     |
|          |         | [bleibt] der Erfahrung vorbehalten": Einsteins abgeschwäch                                             |     |
|          |         | tes Festhalten an der räumlichen Endlichkeit                                                           | 118 |
| 4.5      |         | s kosmologisches Dogma: Eine nichtnegative kosmologi-                                                  |     |
|          |         | Konstante                                                                                              | 119 |
|          | 4.5.1   | Die kosmologische Konstante als Balance zur attraktiven                                                | 110 |
|          | 4 5 9   | Gravitationskraft                                                                                      | 119 |
|          | 4.5.2   | "[M]utwilliges und überflüssiges Kunststück": Angriffe auf die Einführung der kosmologischen Konstante | 119 |
|          | 159     | "[F]ort mit dem kosmologischen Glied"                                                                  | 119 |
|          | 4.5.3   | "[r joit mit dem kosmologischen Gned                                                                   | 120 |

| 4.6    |           | ins Autorität und ihr Einfluß auf die Entwicklung der re-    |     |
|--------|-----------|--------------------------------------------------------------|-----|
|        |           | tischen Kosmologie                                           | 123 |
| 4.7    | Literat   | turverzeichnis                                               | 125 |
| 5 Prüf | ing der l | Einsteinschen Allgemeinen Relativitätstheorie                |     |
| Gu     | drun Wo   | lfschmidt (Hamburg)                                          | 133 |
| 5.1    |           | act                                                          | 133 |
| 5.2    | Die dr    | ei klassischen Einsteinschen Prüfmethoden und die Reak-      |     |
|        | tion de   | er Scientific Community                                      | 134 |
|        | 5.2.1     | Periheldrehung des Merkur                                    | 135 |
|        | 5.2.2     | Lichtablenkung am Sonnenrand                                 |     |
|        |           | (Lichtausbreitung senkrecht zum Gravitationsfeld)            | 138 |
|        | 5.2.3     | Gravitationsrotverschiebung                                  |     |
|        |           | (Licht parallel zum Gravitationsfeld)                        | 140 |
| 5.3    |           | blenkung (senkrecht zum Gravitationsfeld)                    | 142 |
|        | 5.3.1     | Ablenkung bei irdischen Verhältnissen                        | 142 |
|        | 5.3.2     | Ablenkung von Licht im Gravitationsfeld der Sonne $(1,75'')$ |     |
|        |           | bei Sonnenfinsternissen                                      | 142 |
|        | 5.3.3     | Die englische Sonnenfinsternisexpedition – Anstoß für den    |     |
|        |           | Bau des Einsteinturms                                        | 143 |
|        | 5.3.4     | Laufzeitverzögerung von Radar-Signalen bei Planeten oder     |     |
|        |           | Raumsonden – Shapiro-Effekt (1964/68)                        | 147 |
|        | 5.3.5     | Ablenkung elektromagnetischer Signale im Gravitations-       |     |
|        |           | feld (erstmals 1969)                                         | 149 |
|        | 5.3.6     | Moderne Experimente: Ablenkung der Strahlung eines           |     |
|        |           | Quasars durch Jupiter – Cassini spacecraft (NASA 2002)       |     |
|        |           | – Sergei Kopeikin (2002)                                     | 150 |
|        | 5.3.7     | Zeitdilatation bei Atomuhren in Satelliten (1971)            | 151 |
|        | 5.3.8     | Satelliten Gravity Probe A (1976)                            | 152 |
|        | 5.3.9     | Die Lebensdauer von Myonen                                   | 152 |
|        |           | Gravitationslinsen-Effekt                                    | 152 |
| 5.4    |           | ationsverschiebung und Raum-Zeit-Krümmung                    | 155 |
|        | 5.4.1     | Messung bei der Sonne                                        | 155 |
|        | 5.4.2     | Messung bei Weißen Zwergen (erstmals 1925 bei Sirius)        | 155 |
|        | 5.4.3     | Messung auf der Erde – Pound / Rebka (1959)                  | 156 |
| 5.5    |           | omagnetismus: Gravitationsfeld eines rotierenden Körpers     |     |
|        | `         | e, Thirring, 1926)                                           | 157 |
|        | 5.5.1     | Gravity probe B Satellit (2004/05)                           | 157 |
|        | 5.5.2     | Nachweis des Thirring-Lense-Effekts bei Satelliten           | 159 |

| 5.6        | Doppel-Pulsare, Hulse und Taylor – Periastrondrehung und Gravitationswellen | 159       |
|------------|-----------------------------------------------------------------------------|-----------|
| 5.7        | Gravitationswellen: LIGO-Projekt, LISA-Projekt, TAMA; Virgo, GEO 600        | 161       |
| 5.8        | Genauigkeit der Tests der ART                                               | 163       |
| 5.9        | Literatur                                                                   | 164       |
| 2 Drun     | o Thürings Umsturzversuch der Relativitätstheorie                           |           |
|            | nz Kerschbaum, Thomas Posch und Karin Lackner (Wien)                        | 171       |
| 6.1        | Das Direktorat Thüring an der Wiener Universitätssternwarte                 | 111       |
| 0.1        | im Kontext seiner Zeit                                                      | 172       |
| 6.0        |                                                                             |           |
| 6.2        | Thürings Kritik an Einstein                                                 | 177       |
|            | 6.2.1 Der sachlich-rationale Kern der Thüringschen Kritik an                | 170       |
|            | Einstein                                                                    | 178       |
|            | 6.2.2 Der polemisch-antisemitische Duktus der Thüringschen                  | 100       |
| <i>c</i> 2 | Kritik                                                                      | 183       |
| 6.3        | Vorbilder und Weggefährten Thürings                                         | 190       |
|            | 6.3.1 Philipp Lenard                                                        | 190       |
|            | 6.3.2 Johannes Stark                                                        | 191       |
|            | 6.3.3 Hugo Dingler                                                          | 192       |
| 6.4        | Literaturverzeichnis                                                        | 194       |
| 7 Kosm     | ische Linsen bündeln das Licht ferner Welten – Ein kurzer Überblich         | le.       |
|            | r die Geschichte der Gravitationslinsenforschung                            | ıx.       |
|            | sten Busch (Hamburg)                                                        | 197       |
| 7.1        | Abstract                                                                    | 197       |
| 7.2        | Physikalische Grundlagen                                                    | 198       |
| 7.3        | Dunkle Sterne und Attraktion eines Weltkörpers: die Ablenkung               | 130       |
| 1.0        | des Lichts im Zeitalter der klassischen Mechanik                            | 200       |
| 7.4        | "Fiktive Doppelsterne" – das frühe 20. Jahrhundert                          | 200       |
| 7.4 - 7.5  | Quasare und die Vermessung des Kosmos, 1960 bis 1980                        | 201 $204$ |
| 7.6        | Literaturverzeichnis                                                        | 204 $212$ |
| 7.0        | Literatur verzeichnis                                                       | 212       |
| 8 Einste   | ein und die Gravitationswellen                                              |           |
| Wol        | fgang Steinicke (Freiburg)                                                  | 215       |
| 8.1        | Einleitung                                                                  | 215       |
| 8.2        | Die Einsteinschen Feldgleichungen der Gravitation                           | 215       |
|            | 8.2.1 Exakte und genäherte Lösungen                                         | 216       |
| 8.3        | Gravitationswellen, Einsteins "Quadrupolformel"                             | 217       |
|            | 8.3.1 Fortschritte der Theorie?                                             | 219       |

|         | 8.3.2 Neuer Schwung durch neue Methoden                       |
|---------|---------------------------------------------------------------|
|         | 8.3.3 Neue Experimente, Binär-Pulsar                          |
|         | 8.3.4 Probleme mit der Quadrupolformel                        |
| 8.4     | Detektoren für Gravitationswellen, Chancen für den Nachweis . |
| 8.5     | Fazit                                                         |
| 8.6     | Literatur                                                     |
| 9 Aktu  | elle Forschungsthemen der Gravitationsphysik                  |
| Cla     | us Kiefer (Köln)                                              |
| 9.1     | Fundamentale Tests                                            |
| 9.2     | Astrophysik und Kosmologie                                    |
| 9.3     | Strukturen der klassischen Theorie                            |
| 9.4     | Quantengravitation                                            |
| 9.5     | Literatur                                                     |
| 10 Karl | Schwarzschild (1873–1916)                                     |
| Har     | s-Heinrich Voigt (Göttingen)                                  |
| 10.1    | Jugend und Schulzeit                                          |
| 10.2    | Studium und Militärzeit                                       |
| 10.3    | Assistent in Wien                                             |
| 10.4    | Privatdozent in München                                       |
| 10.5    | Göttingen                                                     |
| 10.6    | Potsdam                                                       |
| 10.7    | Literatur                                                     |
| 10.8    | Bibliographie von Karl Schwarzschild                          |
| 11 Die  | frühe Entwicklung der Theorie des inneren Aufbaus der Sterne  |
|         | per Schwarz (Siegen)                                          |
| 11.1    | Einleitung                                                    |
| 11.2    | Die Grundlagen der Theorie polytroper Gaskugeln               |
| 11.3    | Wege zur Theorie                                              |
| 11.4    | Die Kontraktionshypothese                                     |
| 11.5    | Meteorologie und Sonnenphysik                                 |
| 11.6    | Die erste Gaskugel                                            |
|         | Das Lanesche Gesetz                                           |
|         | August Ritter                                                 |
|         | "Gaskugeln"                                                   |
|         | 0Gasförmige Sonnenmaterie – Ansichten um 1900                 |
|         | 1Literatur                                                    |

|        | nderliche Sterne und ihre Bedeutung für die Entwicklung der Astro-  | -          |
|--------|---------------------------------------------------------------------|------------|
| phy    |                                                                     | 202        |
|        | rn Kunzmann (Hamburg)                                               | 283        |
|        | Veränderliche Sterne – Definition                                   | 284        |
| 12.2   | Übersicht über die Geschichte der Entdeckung und Beobachtung        | 285        |
|        | Veränderlicher Sterne                                               |            |
|        | 12.2.1 Die Entwicklung bis 1844                                     | 285        |
|        | 12.2.2 Die Etablierung eines Forschungsgebiets – Friedrich W. A.    | 202        |
| 10.0   | Argelander und die Folgen                                           | 292<br>300 |
| 12.5   | Veränderliche Sterne in der Astrophysik                             |            |
|        | 12.3.1 Veränderliche Sterne und die Anfänge der Astrophysik .       | 300        |
|        | 12.3.2 Beginn der systematischen Erforschung Veränderlicher         | 307        |
| 19.4   | Sterne                                                              | 316        |
| 12.4   | Enteraturverzeichnis                                                | 910        |
| 3 Don  | pelsternsysteme und ihre Bedeutung für die Astrophysik              |            |
|        | lrun Wolfschmidt (Hamburg)                                          | 323        |
|        | Bedeckungsveränderliche und die Analyse der Lichtkurven             | 323        |
| 10.1   | 13.1.1 Zdeněk Kopal und die Einführung der Roche-Hülle für          | 020        |
|        | Enge Doppelsternsysteme                                             | 325        |
| 13.9   | Zusammenfassung                                                     | 329        |
|        | Literaturverzeichnis                                                | 330        |
| 10.0   | Theravar verzerening                                                | 000        |
| 4 Erns | st Julius Öpik – the Life and Scientific Accomplishments            |            |
|        | d Pustylnik (Tartu)                                                 | 333        |
| 14.1   | Childhood, studies in Moscow University, an early scientific career | r333       |
|        | In Central Asia (Tashkent Observatory, Turkestan University).       | 334        |
| 14.3   | Öpik's life and work in Tartu, Estonia (1921–1944)                  | 336        |
|        | 14.3.1 Observations of meteors, planets and stars, concept of a     |            |
|        | comet cloud                                                         | 336        |
|        | 14.3.2 Distance to Andromeda                                        | 338        |
|        | 14.3.3 Stellar luminosity function and H-R diagram, origin of       |            |
|        | red giants                                                          | 339        |
|        | 14.3.4 Probation in Harvard, Arizona expedition                     | 340        |
| 14.4   | Tartu Observatory during World War II,                              |            |
|        | Öpik' emigration to the West, Baltic University                     | 341        |
| 14.5   | Öpik's work in Armagh Observatory (1948–1985)                       | 343        |
|        | 14.5.1 Formation of white dwarfs                                    | 343        |
|        | 14.5.2 Results of Arizona expedition                                | 345        |

|    | 14.6  | Lecturing and research work in Maryland University              | 345 |
|----|-------|-----------------------------------------------------------------|-----|
|    |       | 14.6.1 Supernovae and stellar formation                         | 346 |
|    |       | 14.6.2 Origin of Martian craters                                | 348 |
|    |       | 14.6.3 Jupiter internal energy                                  | 349 |
|    |       |                                                                 | 349 |
|    | 14.7  | The end of the life line                                        | 351 |
|    | 14.8  | Öpik's selected papers                                          | 352 |
|    | 14.9  | References                                                      | 354 |
| 15 | Albre | echt Unsöld (1905–1995) – Biographie und Briefwechsel           |     |
|    |       |                                                                 | 357 |
|    | 15.1  | 9                                                               | 357 |
|    |       | 15.1.1 Wichtige Werke Unsölds                                   | 361 |
|    | 15.2  | Ergänzungen zur Biografie – (aus dem Unsöld-Archiv, Kiel, Vol-  |     |
|    |       | ,                                                               | 363 |
|    | 15.3  |                                                                 | 370 |
|    |       | 15.3.1 Brief vom 25. April 1939 aus Williams Bay (Yerkes Ob-    |     |
|    |       | S /                                                             | 370 |
|    |       | ,                                                               | 372 |
|    |       | 9 , ,                                                           | 374 |
|    | 15.4  | Internationale Beziehungen und Nachkriegszeit                   | 378 |
| 16 | Phys  | sics of stellar atmospheres – new aspects of old problems       |     |
|    | Bode  | o Baschek (Heidelberg)                                          | 383 |
|    | 16.1  | Introduction                                                    | 383 |
|    | 16.2  | Albrecht Unsöld, a pioneer of stellar atmosphere physics        | 384 |
|    |       | 16.2.1 Selected publications                                    | 385 |
|    |       | 16.2.2 Spectra and atomic data                                  | 385 |
|    |       | 16.2.3 Computers for stellar atmosphere physics at Kiel         | 387 |
|    |       | 16.2.4 Selected bibliography of A. Unsöld                       | 388 |
|    | 16.3  | v v                                                             | 389 |
|    |       | 1                                                               | 389 |
|    |       | 1                                                               | 390 |
|    | 16.4  | The infrared spectral range – a challenge to theoretical astro- |     |
|    |       | 1 0                                                             | 391 |
|    |       |                                                                 | 392 |
|    |       | 1                                                               | 394 |
|    |       | ı v                                                             | 395 |
|    |       | •                                                               | 396 |
|    | 16.5  | Outlook                                                         | 397 |

| 17 Der Schatz auf dem Dachboden – Briefe von Einstein, Planck, Nernst | J,  |
|-----------------------------------------------------------------------|-----|
| Debye, Born, Sommerfeld, Courant, Weyl, Ehrenfest und Althoff         |     |
| Klaus Sommer (Göttingen)                                              | 401 |
| 17.1 Wie sich die Briefe wiederfanden                                 | 402 |
| 17.2 Überblick über den Fund                                          | 404 |
| 17.3 Wer entnahm die Briefe dem Nachlass Hilberts?                    | 405 |
| 17.4 Inhalt der Briefe, Allgemeine Relativitätstheorie                | 407 |
| Programm der Tagung am 26. Sept. 2005 in Köln                         | 413 |
| Autoren                                                               | 415 |
| Abbildungsverzeichnis                                                 | 425 |
| Nuncius Hamburgensis                                                  | 429 |
| Personenindex                                                         | 435 |
| Arbeitskreis Astronomiegeschichte                                     |     |

#### Vorwort: Entwicklung der Theoretischen Astrophysik

Gudrun Wolfschmidt (Hamburg)

Anläßlich der Internationalen Wissenschaftlichen Jahrestagung der Astronomischen Gesellschaft (AG)<sup>1</sup> fand in diesem Zusammenhang ein Kolloquium des Arbeitskreises Astronomiegeschichte mit folgendem Thema "Entwicklung der Astrophysik" am Montag, den 26. September 2005, statt.<sup>2</sup> Die Organisation der Tagung lag in Händen der Koordinatoren: Gudrun Wolfschmidt, Schwerpunkt Geschichte der Naturwissenschaften, Universität Hamburg und Claus Kiefer, Institut für Theoretische Physik, Universität zu Köln. Die "Short Contributions" der AG 2005 in Köln erschienen bereits auf englisch bei Wiley in einem Sonderheft der AN: Astronomische Nachrichten 326 (2005), No. 7.

Die Astrophysik entwickelte sich ab den 1860er Jahren als beobachtende Astrophysik. In diesem Buch soll der Schwerpunkt auf der Entwicklung der theoretischen Astrophysik im 20. Jahrhundert liegen. Im Einstein-Jahr 2005 sollte natürlich Albert Einstein (1879–1955) im Zentrum stehen. Anlaß sind der 100. Geburtstag der Speziellen Relativitätstheorie und der 50. Todestag des weltberühmten Wissenschaftlers. Die 1915 aufgestellte Allgemeine Relativitätstheorie (ART) hatte große Konsequenzen für die Entwicklung der Kosmologie, für unsere Vorstellungen von Raum, Zeit, Materie und Energie. Erwin Finlay-Freundlich (1885–1964) versuchte, die Allgemeine Relativitätstheorie (ART) empirisch zu bestätigen. Den diversen Prüfmethoden widmen sich einige Artikel. Das Buch deckt ein Spektrum ab von der Entdeckung der Gravitationsgleichungen und dem Einfluß auf die Entwicklung der Kosmologie bis zu modernen Themen der Graviationsphysik.

Neben Einstein soll in diesem Zusammenhang auch auf Karl Schwarzschild (1873–1916) hingewiesen werden, dem als erstem eine exakte Lösung der Einsteinschen Feldgleichung gelang. Ende 1915 entstand seine berühmte Arbeit über den Schwarzschild-Radius.

<sup>1</sup> Diese Tagung fand in Köln vom 26. September bis 1. Oktober 2005 statt: Das Thema lautete "The many facets of the universe – Revelations by New Instruments"; siehe auch die Tagungs-Web-Seite: http://www.ph1.uni-koeln.de/AG2005/, I. Physikalisches Institut, Universität zu Köln.

<sup>2</sup> http://www.math.uni-hamburg.de/spag/ign/events/ak5koeln.htm Ein Bericht über die Tagung von Henning Krause erschien in "Berichte zur Wissenschaftsgeschichte".



Abbildung 0.1:
Albert Einstein (1879–1955)
Sammlungen des Instituts für Geschichte der Naturwissenschaften (IGN), Universität Hamburg

Schon die Strahlungstheorie bildete die Vorgeschichte zur theoretischen Astrophysik. Ab der Jahrhundertwende entwickelte sich die Astrophysik verstärkt – einhergehend mit der Ausbildung der theoretischen Physik. Dazu gehören Arbeiten zum Aufbau und zur Entwicklung der Sonne und der Sterne sowie die Frage der Energieerzeugung, hier sind nach Vorarbeiten im 19. Jahrhundert besonders Robert Emden (1862–1940) und Arthur Stanley Eddington (1882–1944) zu erwähnen. In diesem Zusammenhang spielt auch das Thema der Entwicklung der Rechentechnik und der Einführung von Computern eine große Rolle – eine Voraussetzung für Modellrechnungen von Sternaufbau und -entwicklung. Schließlich lieferte die Saha-Theorie – Megh Nad Saha (1893–1956) – 1920 die Grundlagen zur Interpretation der Sternspektren und der physikalischen Bedingungen wie beispielsweise Temperatur und Druck in den Sternatmosphären.

Die herausragende Leistung der Astrophysik in Deutschland in den 1930er und 40er Jahren stellt die Arbeit Albrecht Unsölds (1905–1995) dar, der 2005 seinen 100. Geburtstag hatte. Sein bahnbrechendes Werk *Physik der Sternatmosphären* lieferte aufgrund von quantenphysikalischen Methoden erstmals eine detaillierte Analyse der Spektren eines Sterns ( $\tau$  Scorpii) – und nicht nur der Sonne. Neben der Ermittlung der quanitativen Zusammensetzung von Sternatmosphären und deren physikalischen Bedingungen war ein weiteres wichtige Ergebnis seiner Forschungen die Häufigkeit von Elementen im Kosmos. Sein Werk *Der neue Kosmos* war für viele Studenten das Standard-Lehrbuch.

In diesem Band sind nicht nur die Vorträge der Tagung zusammengestellt, sondern auch einige weitere, die gut zum Thema passen und es abrunden. Zu Beginn soll ein kurzer Überblick zur Geschichte der Astronomie und Physik in Köln gegeben werden – vom Mittelalter bis heute.